Christopher Curtis, Brent Garey, Liam Langert, Justin Feldman
CS7150: Deep Learning, Steve Schmidt

Northeastern University

CFD Surrogate ‘I ransformer

Multivariate Regression in Lower Dimensional
Representations with Self-Attention; Scientitic=Priors; and

Physics Informed Loss




Domain Context:

CFD

+ What is Computational Fluid Dynamics?

+ Predicting fluid flow with Newton’s Laws

+ Navier-Stokes Equations:

3 - dimensional - unsteady
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Problem Statement

+ Why does CFD need a surrogate and... what is a surrogate?
+ Mesh generation = extreme resolution requirements

& EXpensive —> massive memory requirements

+ Physics formulas = highly entropic behaviors

@ Our Solution: Transformer Model
+ Next-frame regression predictions of fluid features
+ Expand to auto-regressive simulation

+ Significantly lower dimensional representation of input

+ Our Challenges:

+ Dataset requires high-dimensionality to capture states
+ Underlying mechanics are non-linear and interdependent

+ Efficient computation is high-stakes, and time-sensitive




Dataset: NVIDIA Modulus Cylinder Flow

101 CFD Simulations 400 Frames (0.5s dT) 1699 Nodes 3-Features

-8 o‘

u: x-velocity
v: y-velocity
p: pressure mag

FAN 2

+ Next-frame prediction = [u,v,p] x 1699 = 5097 Features

+ Different Reynolds Number per simulation!!!
+ Reynolds Number & Viscosity! Think water vs honey. More to come on this...




Tokenization Approach

+ Token, 'n', by time-step frame
+ Token n = [u,v,p] x 1699 nodes = 5097 features

+ Very large input dimension

¢ 1 Simulation = 400 Tokens
+ 1 Window = N subsequent tokens
+ 101 Simulations x 400 Tokens / Window Length = Available Inputs

n n+1 n+2 n+3

Custom loss functions are...




Reynolds Number as Scientific Prior

+ Fluid’s Reynold’s Number dependent on density, velocity, and molecular structure

+ Reynold’s Number dictates how [u,v,p] behave over time.
+ The Reynolds number carries a LINEAR relationship with several state values

Flow pattern Reynolds number Description

Re<?

+ Research Question: Can we leverage a representation of the Reynolds number which
can act as an effective Positional Encoding method?




Model Overviews




What were our model approaches? Why?

«» MLP Baseline:

+ Comparison point for Transformer

+ Transformers:

+ Global Content Relationships may capture inter-sensor dynamics
+ Fixed frame length and single-step regressions are favorable for Encoders
+ Simulation, and sequential forecasting favor Decoders

+ Encoder Transformer Interventions:

+ Incorporate scientific priors into state-temporal relationships

¢ Decoder Transformer Interventions:

+ Custom, physics informed loss functions




Baseline: MLP

+ 4-Layer
+ "Wide" Learning

‘ Down
Projection

« Sizes:
o Up
. [25403, 55669, 115501]
o Down
. [128, 64, 32]

Pro'zcr:’tion - bown - Output
J Projection (5097)

(55,669)




Transformers + Common Parameters

o Built from scratch: Encoder and Decoder Transformers
o SwiGLU Activation Function

oD =64o0r128
o 1/7 parameter budget

o 10x better metrics

+ Positional Encoding methods discussed later...




Transformers

Encoder Decoder

+ Low-rank approximation for pooling R = 128 + Triangular Causal Masking
D =64 « D =128, Rank=16
+ Multi-Head Attention (MHA) « Multi-Head Latent Attention (IMLA)




Designing a PE for CFD
(Surrogate Model)




Inventory of our Problem Space

+ FEach token corresponds to a timestep...

+ Each timestep is composed of the state representation containing many interdependent
observations...

+ Problem Space:
o We need to encode a TEMPORAL (NxN) relationship into attention for our PE
o We need to account for the physical relationship for our input's sensor states
o We also want to account for how domain knowledge might influence these relationships




Intervention: Reynolds-Positional-Representation

Letu € RHXDH,r € RB’u(r) —uQre RBXHXDH

Cell-Level View:
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Encoder Study

RQ1: Can our custom PE method compete with standard options?
RQ2: Can we beat a wider baseline (IMLP) for single-step predictions?




Encoder Study: High-level (RQ1)

+ Collect Performance results in a lossless representation of the model

o Encoders can use Bidirectional context of the entire-tensor in it's logits, not just the final row — as
with decoders.

o This practically necessitates the use of some means of pooling for efficiency

+ Run PE methods under different pooling schemes
+ Isolate PE and pooling method effects

+» Compare final model against non-transformer baseline




Encoder Methodology: Experimental Setups
(RQ1)

+ Sequence Length fixed at 10
+ Each frame 1 second apart

+ Goal is to predict U,V,P values of next state for ALL sensors

+ A single-step multivariate regression problem

+» Din=5097, D = 64 or 128, Dout = 5097




Encoder Methodology: Other Conditions (RQ1)

+ RPR: Inspiration method for ReynoldsPR, uses relative token position
representations rather than our Reynolds number representation

+ ALiBi: Fixed linear decay signal instead of a learnable one:

o Empirically captures local relations well

«» APE: Standard method for small-fixed-context encoders

+ NoPE: Just MHA, used for no PE baseline
+ ANTI_METHOD: Replaces Reynolds numbers with random scalars

o Used to determine if Reynolds numbers themselves actually play a role in
performance
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Results Interpretation (RQ1)

+ ReynoldsPR, RPR and APE are Pareto-Optimal
o Not surprising: RPR and APE are well known, standard methods

+ However! RPR and APE face significant tradeoffs:
o RPR: Best MSE, but places in bottom half for all reliability/consistency statistics
o APE: Highly consistent, but MSE is lowest of all PE methods

+ Anti-Method confirms efficacy of Reynolds number in Encoding

+ In contrast: ReynoldsPR never leaves the Top-2 ranks of performance




However... Compression is a Practical Necessity

+ Encoder can use the entire context tensor, as opposed to the last row...
this is an NxD shaped tensor to create a linear map with outhead

o With a high dimensions Dout, this is a parameter explosion!

o 7.8 Mil in our case...

¢ The most common method is to simply mean pool for all tokens
+ However, this is a very lossy operation!

+ We instead opted for a Low Rank Approximation




Sample Mean Pooling D=128

Comparison (AVG MSE) (RQ1)

Low Rank Approximation Pooling

D=64,R=128

Params

~1.96 MIL
~1.96 MIL
~1.96 MIL
~1.96 MIL
~1.96 MIL

AVG MSE
0.005675
0.003181
0.003567
0.005176
0.005147

PE

Params
~1.3 MIL
~1.3 MIL

AVG MSE
0.002905
0.002980




Encoder Transformer vs MLP Baseline (RQ2)

MLP Encoder Trans: ReyPR + LRA

Params AVG MSE Params AVG MSE
~1.3 MIL 0.002905




Decoder Simulation Study




Mbotivation and Results

+ Decoders are typically preferred for long-term forecasting

+ In testing, ReyPR had almost no effect on MSE

| AVG MSE
ReyPR 0.003864
ReyPR + APE 0.003717
APE 0.003754




Why Decoders need a Different Solution?

+ Recall that decoders use causal masking to prevent attention to
future tokens

+ Absolute encoding is powerful here because it gives information
about future progress

+ ReyPR requires an approximation of the entire context tensor to be
effective, when using only the last row APE remains more effective




Physics-Informed Loss Function

+ Fluid simulations use equations as a baseline

o Could we incorporate these into our model as a weighted loss?

+ Results: Higher MSE, lower physics error
+ Uses node positionality @ Navier-Stokes Equations  rocuen
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Possible Improvements/ Future Directions

& Generalize to other simulation environments
£ EXperiment with scientific priors 1n context-tensor computation
% Incorporate 2D spatial data structures into attention

+ Use proper encoder-decoder pair for handling up and down
projections for input and output




Summary of Findings

Transformers

+ Using a low-state representation of the
problem is parameter efficient for CFD

o 7x less parameters, almost 1000x smaller state
space, increased performance by 10x

Positional Encoding

+ Scientific priors can be used as effective
physics informed positional encoding

+ Using ReyPR was optimal over APE for

encoders

+ The choice of out-head compression/pooling
affects PE influence

< Decoder-only models limit effectiveness




Q/A + Demo!

20 Epochs: MSE Loss only
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BONUS SLIDES!




Input X and Weights

+ Prior to feeding our input into the attention block, we down-project
into a lower dimensional representation D"

+ D' refers to the down-projected representation of the sensor data
0 5097 -> 64 (or 128)

+ Here, things are the same as normal, each token is a timestep

+ Therefore: we have a matrix where each timestep is associated with a
lower dimensional state-representation




Query, Key, Value Tensors

Q ZXWQ,K = XWg,V=XWy, € RBXNXD

+ Defined in via the same tensor-level operations as in standard SA
o (Above Equation)

+ Similarly, our Q,K,V values are simply linear reprojections of our
input in order to learn different roles

+ This means that each is STILL an NxD matrix containing a
timestep X state—representation relationship




What does Self-Attention Mean Here?




Encoder Study: Results (Raw Numbers)

Method Avg MSE | Std VL (x107%) IQR ¥ (x107%) 95% CI (%) ¥ (x107%)

ReynoldsPR 0.0013334 3199 3.05 2.48

RPR (Shaw) 0.0013290 7.23 8.73 4.48

ANTI_METHOD 0.0013456 0.48 10.20 6.19

ALIBI 0.0013521 6.07 455

NoPE 0.0013596 6.45 11.90

APE 0.0013826 : 5.60




T B

+ Attention Scores in NxN space

+ Each token is a timestep

« QOur attention learns relevance
between timesteps

+ Therefore, transformations to
the attention score are affecting
how each timestep is considered
relevant to another

The self-attention calculation in matri»




Interpreting our Attention SCOI'€S

+ Since D in both the Q_and K tensors contains a content-representation in
their D-spaces...

+ Our attention scores, organized by timestep, contain only a content-by-
content similarity score for establishing their frame-to-frame relevance...




Pareto-Optimality

+ Multiple objectives to minimize simultaneously:

o MSE (accuracy)
o Std / CI (variance stability)
o IQR (robustness)

¢ (Definition) A method A dominates method B if:

o A is no worse than B on all metrics, and...

o Ais strictly better than B on at least one metric.

+ (Definition) A method is Pareto-Optimal if no other method dominates it.

+ Based on our results... ReynoldsPR is Pareto-Optimal




Encoder Study Implications:

+ Using a Transformer in a highly compressed state representation yields:

o A massive MSE and Parameter reduction from 'wide' MLP representation

+ Scientific Priors can effectively be used as alternative concepts in positional
encoding in embedded representations

+ Encoder compression methods greatly affect PE effectiveness

o Can greatly impact performance on Encoders in general




Low Rank Approximation of the Lossless Linear Map

+ An alternative idea is to use a latent space with the out-head

_ I 640x128
+ Using a Low Rank Approx1mat10n improves performance

and is substantially more efficient!

« This also restores ReyPR to a dominant performance spot! 128x5097

+ This is intriguing, but perhaps not surprising as this method
approximates the lossless version of the problem




