

Christopher Curtis, Brent Garey, Liam Langert, Justin Feldman
CS7150: Deep Learning, Steve Schmidt
Northeastern University

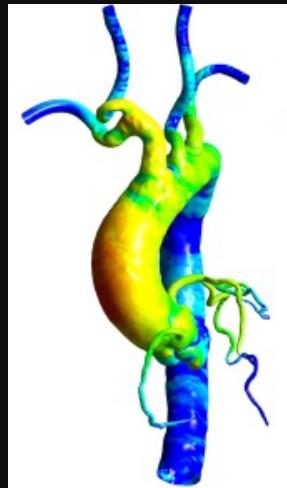
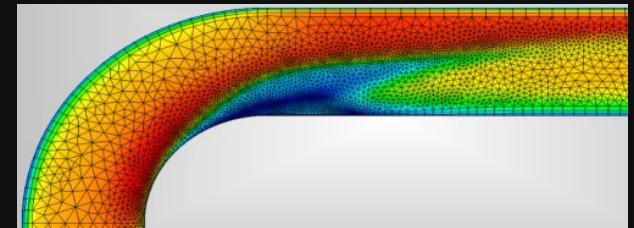
CFD Surrogate Transformer

Multivariate Regression in Lower Dimensional
Representations with Self-Attention, Scientific-Priors, and
Physics Informed Loss

Domain Context: CFD

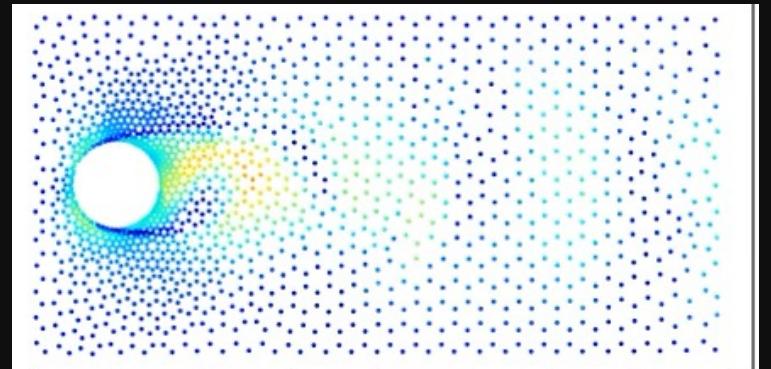
- ❖ What is Computational Fluid Dynamics?
 - ❖ Predicting fluid flow with Newton's Laws
 - ❖ Navier-Stokes Equations:

Navier-Stokes Equations 3-dimensional - unsteady		Glenn Research Center
Coordinates: (x,y,z)	Time : t	Pressure: p
	Density: ρ	Heat Flux: q
Velocity Components: (u,v,w)	Stress: τ	Reynolds Number: Re
	Total Energy: E_t	Prandtl Number: Pr
Continuity:	$\frac{\partial \rho}{\partial t} + \frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} + \frac{\partial(\rho w)}{\partial z} = 0$	
X - Momentum:	$\frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho u^2)}{\partial x} + \frac{\partial(\rho uv)}{\partial y} + \frac{\partial(\rho uw)}{\partial z} = - \frac{\partial p}{\partial x} + \frac{1}{Re} \left[\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} \right]$	
Y - Momentum:	$\frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho uv)}{\partial x} + \frac{\partial(\rho v^2)}{\partial y} + \frac{\partial(\rho vw)}{\partial z} = - \frac{\partial p}{\partial y} + \frac{1}{Re} \left[\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} \right]$	
Z - Momentum	$\frac{\partial(\rho w)}{\partial t} + \frac{\partial(\rho uw)}{\partial x} + \frac{\partial(\rho vw)}{\partial y} + \frac{\partial(\rho w^2)}{\partial z} = - \frac{\partial p}{\partial z} + \frac{1}{Re} \left[\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} \right]$	
Energy:	$\frac{\partial(E_t)}{\partial t} + \frac{\partial(uE_t)}{\partial x} + \frac{\partial(vE_t)}{\partial y} + \frac{\partial(wE_t)}{\partial z} = - \frac{\partial(up)}{\partial x} - \frac{\partial(vp)}{\partial y} - \frac{\partial(wp)}{\partial z} - \frac{1}{Re, Pr} \left[\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z} \right]$ $+ \frac{1}{Re} \left[\frac{\partial}{\partial x} (u \tau_{xx} + v \tau_{xy} + w \tau_{xz}) + \frac{\partial}{\partial y} (u \tau_{xy} + v \tau_{yy} + w \tau_{yz}) + \frac{\partial}{\partial z} (u \tau_{xz} + v \tau_{yz} + w \tau_{zz}) \right]$	

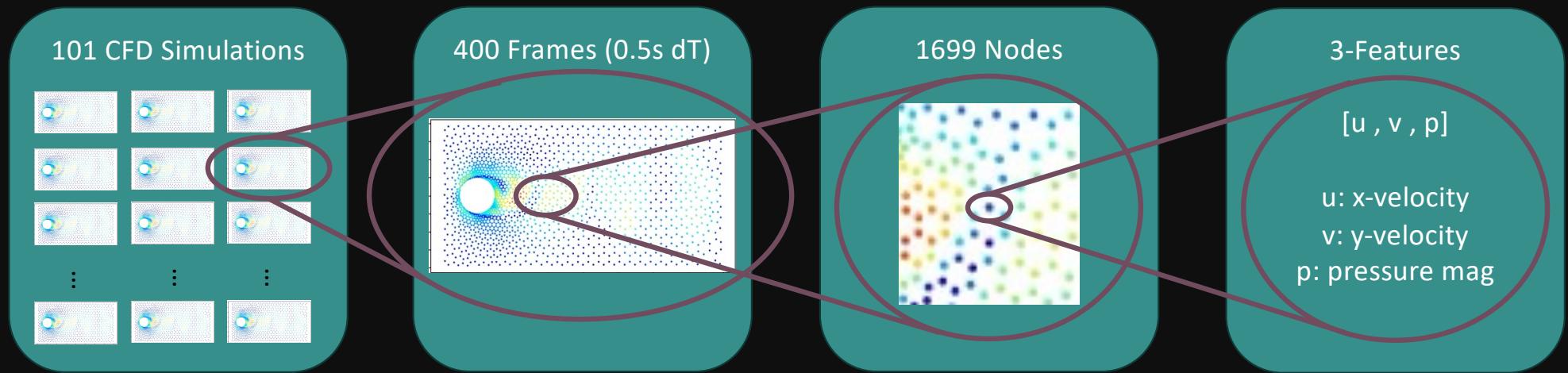


Problem Statement

- ❖ Why does CFD need a surrogate and... what is a surrogate?
 - ❖ Mesh generation → extreme resolution requirements
 - ❖ Expensive → massive memory requirements
 - ❖ Physics formulas → highly entropic behaviors
- ❖ Our Solution: Transformer Model
 - ❖ Next-frame regression predictions of fluid features
 - ❖ Expand to auto-regressive simulation
 - ❖ Significantly lower dimensional representation of input
- ❖ Our Challenges:
 - ❖ Dataset requires high-dimensionality to capture states
 - ❖ Underlying mechanics are non-linear and interdependent
 - ❖ Efficient computation is high-stakes, and time-sensitive



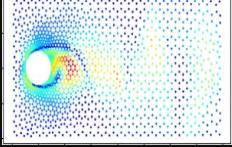
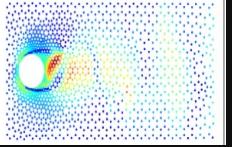
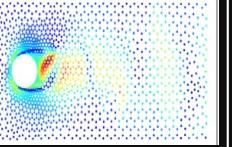
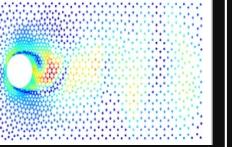
Dataset: NVIDIA Modulus Cylinder Flow



- ❖ Next-frame prediction $\rightarrow [u, v, p] \times 1699 = 5097$ Features
- ❖ Different Reynolds Number per simulation!!!
 - ❖ Reynolds Number \Leftrightarrow Viscosity! Think water vs honey. More to come on this...

Tokenization Approach

- ❖ Token, 'n', by time-step frame
 - ❖ Token n = [u,v,p] x 1699 nodes = 5097 features
 - ❖ Very large input dimension
- ❖ 1 Simulation = 400 Tokens
- ❖ 1 Window = N subsequent tokens
- ❖ 101 Simulations x 400 Tokens / Window Length = Available Inputs

n	n+1	n+2	n+3
Custom	loss	functions	are...
			

Reynolds Number as Scientific Prior

- ❖ Fluid's Reynold's Number dependent on density, velocity, and molecular structure
- ❖ Reynold's Number dictates how $[u,v,p]$ behave *over time*.
 - ❖ The Reynolds number carries a LINEAR relationship with several state values

Flow pattern	Reynolds number	Description
	$Re < 5$	No separation, laminar steady flow
	$5 < Re < 45$	Pair of vortices, laminar steady flow
	$45 < Re < 150$	Laminar vortex street, unsteady flow
	$150 < Re < 3 \cdot 10^5$	Transitional unsteady flow
	$3 \cdot 10^5 < Re < 3 \cdot 10^6$	Turbulent unsteady flow
	$Re > 3 \cdot 10^6$	Turbulent vortex street, unsteady flow

- ❖ Research Question: Can we leverage a representation of the Reynolds number which can act as an effective Positional Encoding method?

Model Overviews

What were our model approaches? Why?

- ❖ MLP Baseline:
 - ❖ Comparison point for Transformer
- ❖ Transformers:
 - ❖ Global Content Relationships may capture inter-sensor dynamics
 - ❖ Fixed frame length and single-step regressions are favorable for Encoders
 - ❖ Simulation, and sequential forecasting favor Decoders
- ❖ Encoder Transformer Interventions:
 - ❖ Incorporate scientific priors into state-temporal relationships
- ❖ Decoder Transformer Interventions:
 - ❖ Custom, physics informed loss functions

Baseline: MLP

- ❖ 4-Layer
- ❖ "Wide" Learning

- ❖ Sizes:
 - Up
 - [25403, 55669, 115501]
 - Down
 - [128, 64, 32]

Transformers + Common Parameters

- ❖ Built from scratch: Encoder and Decoder Transformers
- ❖ SwiGLU Activation Function
- ❖ $D = 64$ or 128
 - $1/7$ parameter budget
 - $10x$ better metrics
- ❖ Positional Encoding methods discussed later...

Transformers

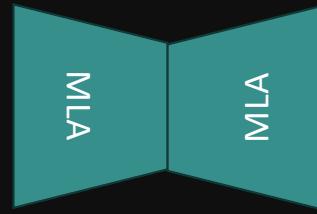
Encoder

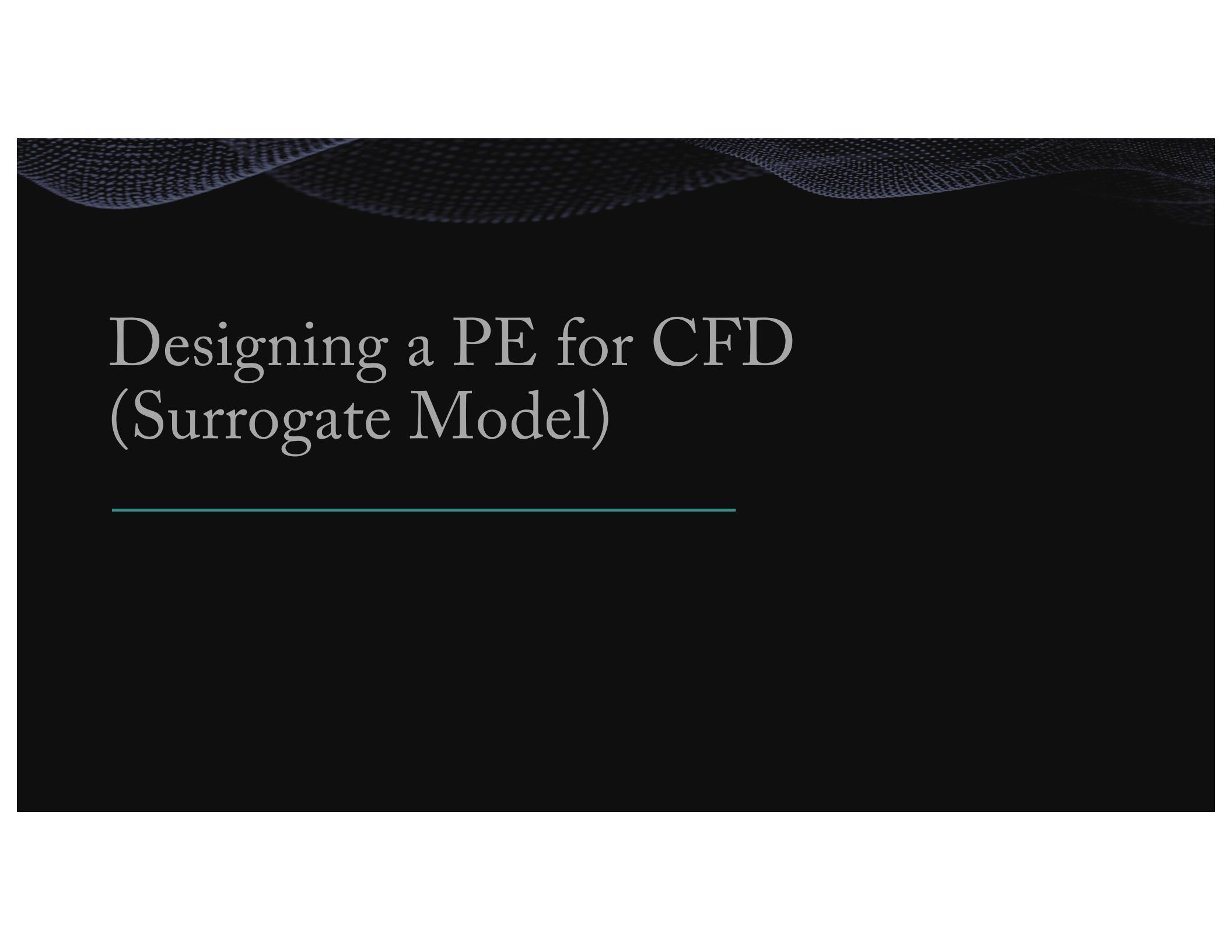
- ❖ Low-rank approximation for pooling $R = 128$
- ❖ $D = 64$
- ❖ Multi-Head Attention (MHA)



Decoder

- ❖ Triangular Causal Masking
- ❖ $D = 128$, Rank=16
- ❖ Multi-Head Latent Attention (MLA)





Designing a PE for CFD (Surrogate Model)

Inventory of our Problem Space

- ❖ Each token corresponds to a timestep...
- ❖ Each timestep is composed of the state representation containing many interdependent observations...
- ❖ Problem Space:
 - We need to encode a TEMPORAL ($N \times N$) relationship into attention for our PE
 - We need to account for the physical relationship for our input's sensor states
 - We also want to account for how domain knowledge might influence these relationships

Intervention: Reynolds-Positional-Representation

Let $u \in \mathbb{R}^{H \times D_H}$, $r \in \mathbb{R}^B$, $u^{(r)} = u \odot r \in \mathbb{R}^{B \times H \times D_H}$

Cell-Level View:

$$\hat{\omega}_{[b,h,i,j]} = Q_{[b,h,i]} \cdot K_{[b,h,j]} + \sum_d^D Q_{[b,h,i,d]} u_{[b,h,d]}^{(r)} = Q_{[b,h,i]} \cdot K_{[b,h,j]} + Q_{[b,h,i]} \cdot u_{[b,h]}^{(r)}$$

Tensor-Level View: Let $\hat{R} \in \mathbb{R}^{N \times N \times D}$

$$\hat{\omega} = QK^T + \text{einsum}(Q_{bhid}, u_{bhd}^{(r)}; \rightarrow_{bhi})$$

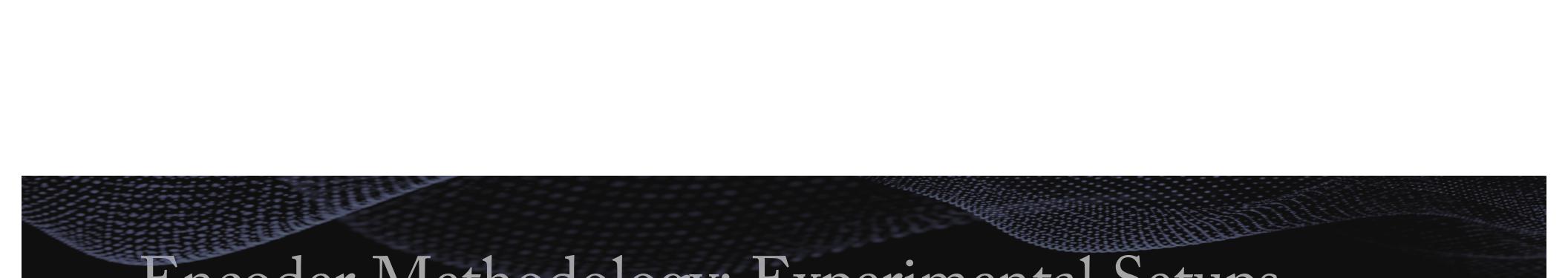
Encoder Study

RQ1: Can our custom PE method compete with standard options?

RQ2: Can we beat a wider baseline (MLP) for single-step predictions?

Encoder Study: High-level (RQ1)

- ❖ Collect Performance results in a lossless representation of the model
 - Encoders can use Bidirectional context of the entire-tensor in it's logits, not just the final row – as with decoders.
 - This practically necessitates the use of some means of pooling for efficiency
- ❖ Run PE methods under different pooling schemes
- ❖ Isolate PE and pooling method effects
- ❖ Compare final model against non-transformer baseline



Encoder Methodology: Experimental Setups (RQ1)

- ❖ Sequence Length fixed at 10
- ❖ Each frame 1 second apart
- ❖ Goal is to predict U,V,P values of next state for ALL sensors
- ❖ A single-step multivariate regression problem
- ❖ $D_{in}=5097$, $D = 64$ or 128 , $D_{out} = 5097$

Encoder Methodology: Other Conditions (RQ1)

- ❖ RPR: Inspiration method for ReynoldsPR, uses relative token position representations rather than our Reynolds number representation
- ❖ ALiBi: Fixed linear decay signal instead of a learnable one:
 - Empirically captures local relations well
- ❖ APE: Standard method for small-fixed-context encoders
- ❖ NoPE: Just MHA, used for no PE baseline
- ❖ ANTI_METHOD: Replaces Reynolds numbers with random scalars
 - Used to determine if Reynolds numbers themselves actually play a role in performance

Encoder Study: Results (Rankings) D=128 [LOSSLESS]

Rank	Avg MSE	Std	IQR	95% CI
1st	RPR (Shaw)	APE	ReynoldsPR	APE
2nd	ReynoldsPR	ReynoldsPR	ALiBi	ReynoldsPR
3rd	ANTI_METHOD	ALiBi	APE	ALiBi
4th	ALiBi	NoPE	RPR (Shaw)	NoPE
5th	NoPE	RPR (Shaw)	ANTI_METHOD	RPR (Shaw)
6th	APE	ANTI_METHOD	NoPE	ANTI_METHOD

Results Interpretation (RQ1)

- ❖ ReynoldsPR, RPR and APE are Pareto-Optimal
 - Not surprising: RPR and APE are well known, standard methods
- ❖ **However!** RPR and APE face significant tradeoffs:
 - RPR: Best MSE, but places in bottom half for all reliability/consistency statistics
 - APE: Highly consistent, but MSE is lowest of all PE methods
- ❖ Anti-Method confirms efficacy of Reynolds number in Encoding
- ❖ **In contrast:** ReynoldsPR never leaves the Top-2 ranks of performance

However... Compression is a Practical Necessity

- ❖ Encoder can use the entire context tensor, as opposed to the last row...
this is an $N \times D$ shaped tensor to create a linear map with outhead
 - With a high dimensions D_{out} , this is a parameter explosion!
 - 7.8 Mil in our case...
- ❖ The most common method is to simply mean pool for all tokens
- ❖ However, this is a very lossy operation!
- ❖ We instead opted for a Low Rank Approximation

Comparison (AVG MSE) (RQ1)

Sample Mean Pooling D=128

PE	Params	AVG MSE
ReyPR	~1.96 MIL	0.005675
APE	~1.96 MIL	0.003181
RPR	~1.96 MIL	0.003567
NoPE	~1.96 MIL	0.005176
ALiBi	~1.96 MIL	0.005147

Low Rank Approximation Pooling D=64,R=128

PE	Params	AVG MSE
ReyPR	~1.3 MIL	0.002905
APE	~1.3 MIL	0.002980

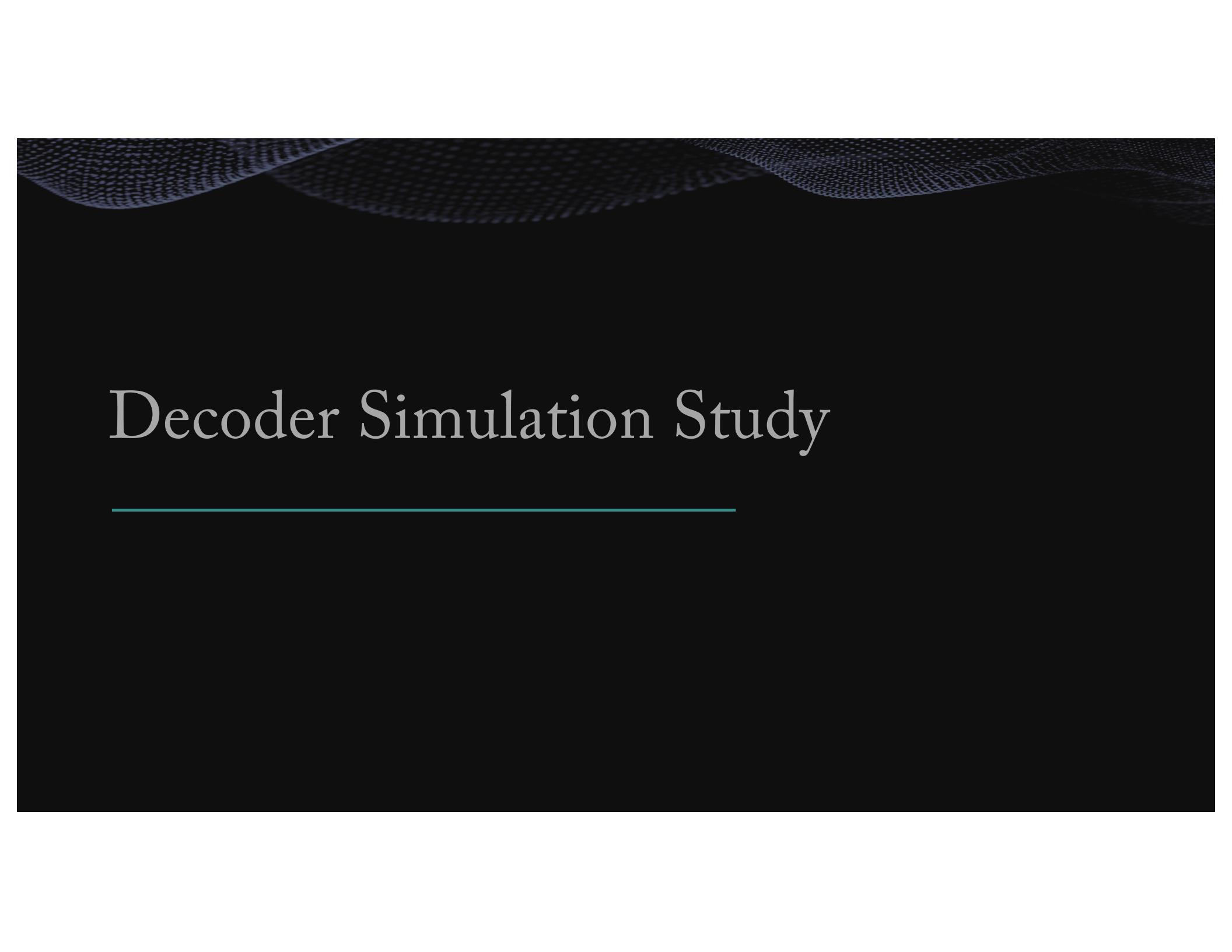
Encoder Transformer vs MLP Baseline (RQ2)

MLP

Params	AVG MSE
~1.3 MIL	0.036
~1.8 MIL	0.031
~5.6 MIL	0.028
~7.8 MIL	0.021
~10 MIL	0.015

Encoder Trans: ReyPR + LRA

Params	AVG MSE
~1.3 MIL	0.002905



Decoder Simulation Study

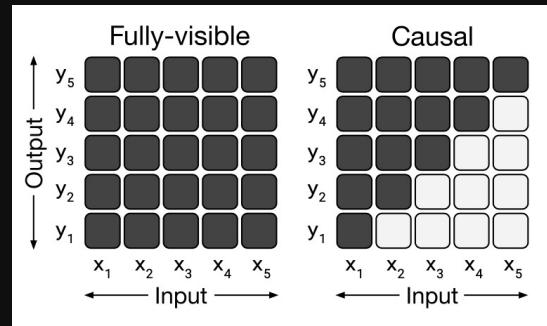
Motivation and Results

- ❖ Decoders are typically preferred for long-term forecasting
- ❖ In testing, ReyPR had almost no effect on MSE

PE	AVG MSE
ReyPR	0.003864
ReyPR + APE	0.003717
APE	0.003754

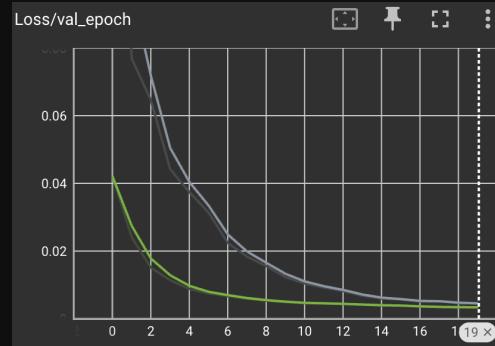
Why Decoders need a Different Solution?

- ❖ Recall that decoders use causal masking to prevent attention to future tokens
- ❖ Absolute encoding is powerful here because it gives information about future progress
- ❖ ReyPR requires an approximation of the entire context tensor to be effective, when using only the last row APE remains more effective



Physics-Informed Loss Function

- ❖ Fluid simulations use equations as a baseline
 - Could we incorporate these into our model as a weighted loss?
- ❖ Results: Higher MSE, lower physics error
- ❖ Uses node positionality
 - Potentially generalizable to other simulations



Pure MSE Loss

NASA		Navier–Stokes Equations			Glenn Research Center
		3 – dimensional – unsteady			
Coordinates:	(x,y,z)	Time :	t	Pressure:	p
Velocity Components:	(u,v,w)	Density:	ρ	Stress:	τ
		Total Energy:	E_t	Reynolds Number:	Re
				Prandtl Number:	Pr
Continuity:		$\frac{\partial \rho}{\partial t} + \frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} + \frac{\partial(\rho w)}{\partial z} = 0$			
X – Momentum:		$\frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho u^2)}{\partial x} + \frac{\partial(\rho uv)}{\partial y} + \frac{\partial(\rho uw)}{\partial z} = - \frac{\partial p}{\partial x} + \frac{1}{Re_r} \left[\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} \right]$			
Y – Momentum:		$\frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho uv)}{\partial x} + \frac{\partial(\rho v^2)}{\partial y} + \frac{\partial(\rho vw)}{\partial z} = - \frac{\partial p}{\partial y} + \frac{1}{Re_r} \left[\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} \right]$			
Z – Momentum		$\frac{\partial(\rho w)}{\partial t} + \frac{\partial(\rho uw)}{\partial x} + \frac{\partial(\rho vw)}{\partial y} + \frac{\partial(\rho w^2)}{\partial z} = - \frac{\partial p}{\partial z} + \frac{1}{Re_r} \left[\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} \right]$			
Energy:		$\frac{\partial(E_t)}{\partial t} + \frac{\partial(uE_t)}{\partial x} + \frac{\partial(vE_t)}{\partial y} + \frac{\partial(wE_t)}{\partial z} = - \frac{\partial(up)}{\partial x} - \frac{\partial(vp)}{\partial y} - \frac{\partial(wp)}{\partial z} - \frac{1}{Re_r Pr_r} \left[\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z} \right]$			
		$+ \frac{1}{Re_r} \left[\frac{\partial}{\partial x} (u \tau_{xx} + v \tau_{xy} + w \tau_{xz}) + \frac{\partial}{\partial y} (u \tau_{xy} + v \tau_{yy} + w \tau_{yz}) + \frac{\partial}{\partial z} (u \tau_{xz} + v \tau_{yz} + w \tau_{zz}) \right]$			

Possible Improvements/ Future Directions

- ❖ Generalize to other simulation environments
- ❖ Experiment with scientific priors in context-tensor computation
- ❖ Incorporate 2D spatial data structures into attention
- ❖ Use proper encoder-decoder pair for handling up and down projections for input and output

Summary of Findings

Transformers

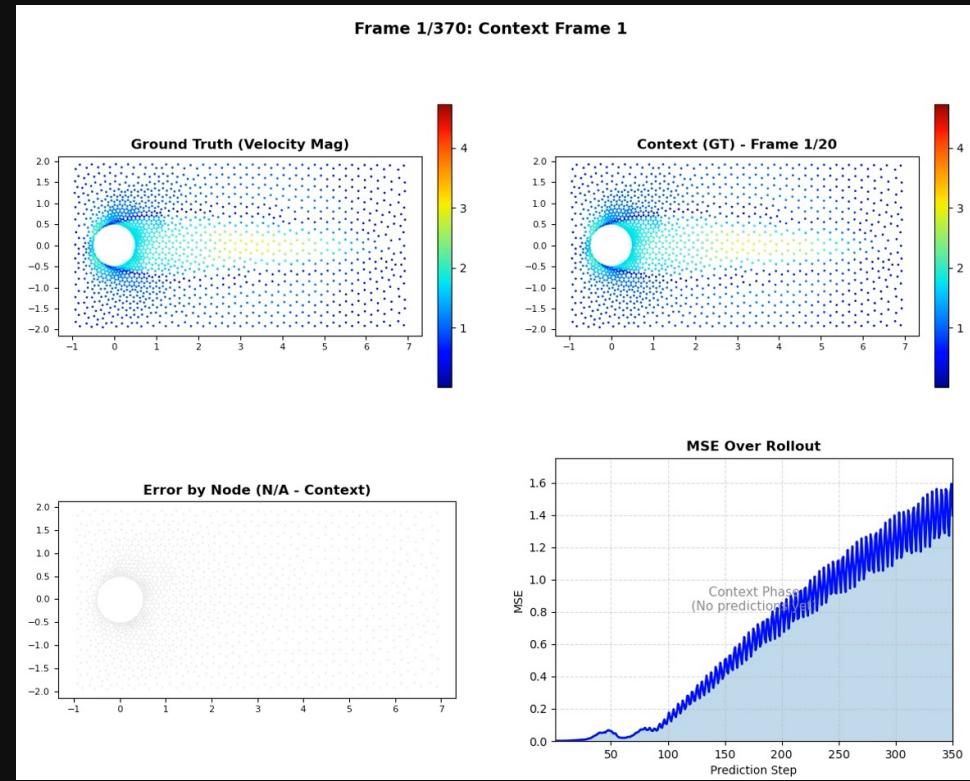
- ❖ Using a low-state representation of the problem is parameter efficient for CFD
 - 7x less parameters, almost 1000x smaller state space, increased performance by 10x

Positional Encoding

- ❖ Scientific priors can be used as effective physics informed positional encoding
 - Using ReyPR was optimal over APE for encoders
 - The choice of out-head compression/pooling affects PE influence
 - Decoder-only models limit effectiveness

Q/A + Demo!

20 Epochs: MSE Loss only



BONUS SLIDES!

Input X and Weights

$$X \in \mathbb{R}^{B \times N \times D}$$
$$W_Q, W_K, W_V \in \mathbb{R}^{D \times D}$$

- ❖ Prior to feeding our input into the attention block, *we down-project into a lower dimensional representation 'D'*
- ❖ 'D' refers to the down-projected representation of the sensor data
 - 5097 -> 64 (or 128)
- ❖ Here, things are the same as normal, *each token is a timestep*
- ❖ Therefore: we have a matrix where each timestep is associated with a lower dimensional state-representation

Query, Key, Value Tensors

$$Q = XW_Q, K = XW_K, V = XW_V \in \mathbb{R}^{B \times N \times D}$$

- ❖ Defined in via the same tensor-level operations as in standard SA
 - (Above Equation)
- ❖ Similarly, our Q,K,V values are simply linear reprojections of our input in order to learn different roles
- ❖ This means that each is STILL an NxD matrix containing a timestep x state-representation relationship

$$Q_{[i,j]} = (XW_q)_{[i,j]} = \sum_{d=1}^D X_{[i,d]} W_{q[d,j]} = X_{[i]} \cdot W_q^T [j]$$

What does Self-Attention *Mean* Here?

Encoder Study: Results (Raw Numbers)

Method	Avg MSE ↓	Std ↓ ($\times 10^{-5}$)	IQR ↓ ($\times 10^{-5}$)	95% CI (\pm) ↓ ($\times 10^{-5}$)
ReynoldsPR	0.0013334	3.99	3.05	2.48
RPR (Shaw)	0.0013290	7.23	8.73	4.48
ANTI_METHOD	0.0013456	9.48	10.20	6.19
ALiBi	0.0013521	6.07	4.55	3.76
NoPE	0.0013596	6.45	11.90	4.22
APE	0.0013826	4.40	5.60	2.73

Q

purple	purple	purple
purple	purple	purple

\times

K^T

orange	orange

=

ω

pink	pink
pink	pink

Attention Scores

- ❖ Attention Scores in NxN space
- ❖ Each token is a timestep
- ❖ Our attention learns relevance between *timesteps*
- ❖ Therefore, transformations to the attention score are affecting how each timestep is considered relevant to another

The self-attention calculation in matrix

Interpreting our Attention Scores

$$\omega_{[i,j]} = (QK^T)_{[i,j]} = \sum_{d=1}^D Q_{[i,d]} K_{[d,j]}^T = Q_{[i]} \cdot K_{[j]}$$

- ❖ Since D in both the Q and K tensors contains a content-representation in their D-spaces...
- ❖ Our attention scores, organized by timestep, contain only a content-by-content similarity score for establishing their frame-to-frame relevance...

Pareto-Optimality

- ❖ Multiple objectives to minimize simultaneously:
 - MSE (accuracy)
 - Std / CI (variance stability)
 - IQR (robustness)
- ❖ (Definition) A method A dominates method B if:
 - A is no worse than B on all metrics, and...
 - A is strictly better than B on at least one metric.
- ❖ (Definition) A method is *Pareto-Optimal* if no other method dominates it.
- ❖ Based on our results... **ReynoldsPR** is Pareto-Optimal

Encoder Study Implications:

- ❖ Using a Transformer in a highly compressed state representation yields:
 - A massive MSE and Parameter reduction from 'wide' MLP representation
- ❖ Scientific Priors can effectively be used as alternative concepts in positional encoding in embedded representations
- ❖ Encoder compression methods greatly affect PE effectiveness
 - Can greatly impact performance on Encoders in general

Low Rank Approximation of the Lossless Linear Map

- ❖ An alternative idea is to use a latent space with the out-head
- ❖ Using a Low Rank Approximation improves performance and is substantially more efficient!
- ❖ This also restores ReyPR to a dominant performance spot!
- ❖ This is intriguing, but perhaps not surprising as this method approximates the lossless version of the problem

