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Domain Context: CFD
v What is Computational Fluid Dynamics?

v Predicting fluid flow with Newton’s Laws
v Navier-Stokes Equations:



Problem Statement 
v Why does CFD need a surrogate and… what is a surrogate?

v Mesh generation à extreme resolution requirements
v Expensive           à massive memory requirements
v Physics formulas à highly entropic behaviors 

v Our Solution: Transformer Model
v Next-frame regression predictions of fluid features
v Expand to auto-regressive simulation
v Significantly lower dimensional representation of input

v Our Challenges:
v Dataset requires high-dimensionality to capture states
v Underlying mechanics are non-linear and interdependent
v Efficient computation is high-stakes, and time-sensitive



Dataset: NVIDIA Modulus Cylinder Flow

v Next-frame prediction à [u,v,p] x 1699 = 5097 Features
v Different Reynolds Number per simulation!!! 

v Reynolds Number ó Viscosity! Think water vs honey. More to come on this…

101 CFD Simulations

… ……

400 Frames (0.5s dT) 1699 Nodes 3-Features

[u , v , p]

u: x-velocity
v: y-velocity

p: pressure mag



Tokenization Approach
v Token, 'n', by time-step frame

v Token n = [u,v,p] x 1699 nodes = 5097 features
v Very large input dimension

v 1 Simulation = 400 Tokens
v 1 Window = N subsequent tokens
v 101 Simulations x 400 Tokens / Window Length = Available Inputs

Custom loss functions are…

n n+1 n+2 n+3

?



Reynolds Number as Scientific Prior 
v Fluid’s Reynold’s Number dependent on density, velocity, and molecular structure
v Reynold’s Number dictates how [u,v,p] behave over time.

v The Reynolds number carries a LINEAR relationship with several state values

v Research Question: Can we leverage a representation of the Reynolds number which 
can act as an effective Positional Encoding method?



Model Overviews



What were our model approaches? Why?
v MLP Baseline:

v Comparison point for Transformer

v Transformers:
v Global Content Relationships may capture inter-sensor dynamics
v Fixed frame length and single-step regressions are favorable for Encoders
v Simulation, and sequential forecasting favor Decoders

v Encoder Transformer Interventions:
v Incorporate scientific priors into state-temporal relationships

v Decoder Transformer Interventions:
v Custom, physics informed loss functions



Baseline: MLP

v 4-Layer
v "Wide" Learning 

v Sizes:
o Up

§ [25403,  55669, 115501]
o Down

§ [128, 64, 32]

Up
Projection
(55,669)

Input
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Down
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Down
Projection

Output
(5097)



Transformers + Common Parameters
v Built from scratch: Encoder and Decoder Transformers
v SwiGLU Activation Function
v D = 64 or 128

o 1/7 parameter budget
o 10x better metrics

v Positional Encoding methods discussed later...



Transformers

Encoder

v Low-rank approximation for pooling R = 128
v D = 64
v Multi-Head Attention (MHA)

Decoder

v Triangular Causal Masking
v D = 128, Rank=16
v Multi-Head Latent Attention (MLA)

MHA

M
LA

M
LA



Designing a PE for CFD
(Surrogate Model)



Inventory of our Problem Space

v Each token corresponds to a timestep...
v Each timestep is composed of the state representation containing many interdependent 

observations...

v Problem Space: 
o We need to encode a TEMPORAL (NxN) relationship into attention for our PE
o We need to account for the physical relationship for our input's sensor states
o We also want to account for how domain knowledge might influence these relationships



Intervention: Reynolds-Positional-Representation

v TODO Explain



Encoder Study

RQ1: Can our custom PE method compete with standard options?
RQ2: Can we beat a wider baseline (MLP) for single-step predictions?



Encoder Study: High-level (RQ1)

v Collect Performance results in a lossless representation of the model
o Encoders can use Bidirectional context of the entire-tensor in it's logits, not just the final row – as 

with decoders. 
o This practically necessitates the use of some means of pooling for efficiency

v Run PE methods under different pooling schemes 
v Isolate PE and pooling method effects
v Compare final model against non-transformer baseline



Encoder Methodology: Experimental Setups 
(RQ1)

v Sequence Length fixed at 10
v Each frame 1 second apart
v Goal is to predict U,V,P values of next state for ALL sensors 
v A single-step multivariate regression problem

v Din=5097, D = 64 or 128, Dout = 5097



Encoder Methodology: Other Conditions (RQ1)
v RPR: Inspiration method for ReynoldsPR, uses relative token position 

representations rather than our Reynolds number representation
v ALiBi: Fixed linear decay signal instead of a learnable one:

� Empirically captures local relations well

v APE: Standard method for small-fixed-context encoders

v NoPE: Just MHA, used for no PE baseline
v ANTI_METHOD: Replaces Reynolds numbers with random scalars

o Used to determine if Reynolds numbers themselves actually play a role in 
performance



Encoder Study: Results (Rankings) D=128 [LOSSLESS]



Results Interpretation (RQ1)
v ReynoldsPR, RPR and APE are Pareto-Optimal

o Not surprising: RPR and APE are well known, standard methods 
v However! RPR and APE face significant tradeoffs: 

o RPR: Best MSE, but places in bottom half for all reliability/consistency statistics
o APE: Highly consistent, but MSE is lowest of all PE methods

v Anti-Method confirms efficacy of Reynolds number in Encoding

v In contrast: ReynoldsPR never leaves the Top-2 ranks of performance



However... Compression is a Practical Necessity
v Encoder can use the entire context tensor, as opposed to the last row... 

this is an NxD shaped tensor to create a linear map with outhead
o With a high dimensions Dout, this is a parameter explosion!
o 7.8 Mil in our case...

v The most common method is to simply mean pool for all tokens
v However, this is a very lossy operation!
v We instead opted for a Low Rank Approximation



Comparison (AVG MSE) (RQ1)

Sample Mean Pooling D=128

PE Params AVG MSE

ReyPR ~1.96 MIL 0.005675

APE ~1.96 MIL 0.003181

RPR ~1.96 MIL 0.003567

NoPE ~1.96 MIL 0.005176

ALiBi ~1.96 MIL 0.005147

Low Rank Approximation Pooling 
D=64,R=128

PE Params AVG MSE

ReyPR ~1.3 MIL 0.002905

APE ~1.3 MIL 0.002980



Encoder Transformer vs MLP Baseline (RQ2)

MLP

Params AVG MSE

~1.3 MIL 0.036

~1.8 MIL 0.031

~5.6 MIL 0.028

~7.8 MIL 0.021

~10 MIL 0.015

Encoder Trans: ReyPR + LRA

Params AVG MSE

~1.3 MIL 0.002905



Decoder Simulation Study



Motivation and Results

v Decoders are typically preferred for long-term forecasting
v In testing, ReyPR had almost no effect on MSE

PE AVG MSE

ReyPR 0.003864

ReyPR + APE 0.003717

APE 0.003754



Why Decoders need a Different Solution?
v Recall that decoders use causal masking to prevent attention to 

future tokens
v Absolute encoding is powerful here because it gives information 

about future progress
v ReyPR requires an approximation of the entire context tensor to be 

effective, when using only the last row APE remains more effective



Physics-Informed Loss Function
v Fluid simulations use equations as a baseline

o Could we incorporate these into our model as a weighted loss?
v Results: Higher MSE, lower physics error
v Uses node positionality

o Potentially generalizable to other simulations

Pure MSE Loss



Possible Improvements/ Future Directions

v Generalize to other simulation environments
v Experiment with scientific priors in context-tensor computation
v Incorporate 2D spatial data structures into attention
v Use proper encoder-decoder pair for handling up and down 

projections for input and output



Summary of Findings

Transformers 

v Using a low-state representation of the 
problem is parameter efficient for CFD

o 7x less parameters, almost 1000x smaller state 
space, increased performance by 10x

Positional Encoding

v Scientific priors can be used as effective 
physics informed positional encoding

v Using ReyPR was optimal over APE for 
encoders

v The choice of out-head compression/pooling 
affects PE influence

v Decoder-only models limit effectiveness



Q/A + Demo! 
20 Epochs: MSE Loss only  



BONUS SLIDES!



Input X and Weights

v Prior to feeding our input into the attention block, we down-project 
into a lower dimensional representation 'D'.

v 'D' refers to the down-projected representation of the sensor data
� 5097 -> 64 (or 128)

v Here, things are the same as normal, each token is a timestep

v Therefore: we have a matrix where each timestep is associated with a 
lower dimensional state-representation



Query, Key, Value Tensors

v Defined in via the same tensor-level operations as in standard SA
o (Above Equation)

v Similarly, our Q,K,V values are simply linear reprojections of our 
input in order to learn different roles

v This means that each is STILL an NxD matrix containing a 
timestep x state-representation relationship



What does Self-Attention Mean Here?



Encoder Study: Results (Raw Numbers)



Attention Scores

v

v

v

v



Interpreting our Attention Scores

v Since D in both the Q and K tensors contains a content-representation in 
their D-spaces...

v Our attention scores, organized by timestep, contain only a content-by-
content similarity score for establishing their frame-to-frame relevance...



Pareto-Optimality
v Multiple objectives to minimize simultaneously:

o MSE (accuracy)
o Std / CI (variance stability)
o IQR (robustness)

v (Definition) A method A dominates method B if:
o A is no worse than B on all metrics, and...
o A is strictly better than B on at least one metric.

v (Definition) A method is Pareto-Optimal if no other method dominates it.

v Based on our results... ReynoldsPR is Pareto-Optimal



Encoder Study Implications:

v Using a Transformer in a highly compressed state representation yields:
� A massive MSE and Parameter reduction from 'wide' MLP representation

v Scientific Priors can effectively be used as alternative concepts in positional 
encoding in embedded representations

v Encoder compression methods greatly affect PE effectiveness
o Can greatly impact performance on Encoders in general



Low Rank Approximation of the Lossless Linear Map

v An alternative idea is to use a latent space with the out-head

v Using a Low Rank Approximation improves performance
and is substantially more efficient!

v This also restores ReyPR to a dominant performance spot!
v This is intriguing, but perhaps not surprising as this method 

approximates the lossless version of the problem

128x5097

640x128


