
Music Reconstruction Using Genetic Algorithms
Arzoo Jiwani∗, Justin Feldman ∗,Venkata Krishna Rayalu Garapati ∗,

Annamayya Vennelakanti ∗, Vishwajeet Hogale ∗, Jason Zou ∗
∗Khoury College of Computer Sciences, Northeastern University, Boston, MA

Abstract—This study proposes a genetic algorithm framework
for music reconstruction that prioritizes musical coherence across
instrumental sections from multiple unassociated songs. The
system reads MIDI files to extract relevant musical elements, then
uses genetic operations to introduce variations and transitions to
improvise or randomize the existing music data to create newer
versions. The fitness function assesses a generated song’s quan-
titative musical qualities to objectively rank the best tunes. The
algorithm outputs the best songs at the end of the evolutionary
process as MIDI files with intact musical coherence.

Index Terms—Genetic Algorithms, MIDI Processing, Music
Generation, Musical Coherence.

I. INTRODUCTION

Genetic algorithms are a robust genre of algorithms that
are inspired by the theories of natural selection and evolution.
Given a population of individuals represented as a structured
data set, the genetic algorithm architecture creates an artificial
natural selection environment in which the strongest individu-
als survive based on the strength of their “genetics”. These
surviving individuals remain in the population to produce
offspring that carry combinations of the parents’ genetics along
with novel genetic mutations as they occur naturally in living
beings. These offspring potentially possess a stronger genetic
composition, improving the population’s traits overall as the
evolutionary process continues.

Genetic algorithms’ strength lies in their capability to ana-
lyze the performance of a vast diversity of data manipulations
without the use of complex mathematics that other artificial
intelligence algorithms rely on. During the evolutionary pro-
cess, complex data structures or data activations are refined
to produce results that trend towards the creator’s desired
outcomes. Given the biologically inspired elements of genetic
algorithms, we were naturally inclined to explore the applica-
tion of a similarly humanistic and powerful process, musical
composition.

Music is timeless and universalized. It transcends geological
location, timelines, language, and has a direct impact on
human emotions. However, it is as deeply quantitative as
it is creative. This dichotomy is what draws us to musical
composition as an application for genetic algorithms. At its
roots, music is just a combination of sound. Sound is just
a product of quantifiable physical vibrations. The field of
music theory emerges from these quantitative connections and
bridges the gap between music’s subjectivity and objectivity.
Music theory is what gives us the opportunity to computerize
the musical composition process.

While the likes of music generation and artificial intelli-
gence have already converged, the existing methods revolve

around deep machine learning models that train on vast
networks of existing songs. Our study aims to explore the
functionality of genetic algorithms to identify the aligning
patterns of smaller subsets of existing songs, and express
their overlapping features through the recombination of new
musical compositions.

II. RELATED WORKS

Genetic algorithms for music production have been ex-
amined in terms of decomposing and recombining musical
elements including melody, rhythm, and harmony. These meth-
ods are based on evolutionary notions similar to those seen
in natural evolution, with genetic fitness functions direct-
ing compositions. Several studies propose automating music
production by integrating human evaluation, digital signal
processing, and MIDI-based recombination.

Farzaneh and Toroghi (2021) [1] created a melody gen-
erating system with an interactive evolutionary algorithm.
Human evaluators grade the generated music. This approach
combines genetic algorithms and deep learning using a Bi-
LSTM network, demonstrating how iterative feedback can
improve musical compositions. This experiment highlights the
possibilities of interactive evaluation in music generation.

Matić (2010) [2] created a genetic system for music com-
position that uses position-based rhythm representation and
relative pitch encoding. This technique allows for varied
and robust composition, preventing premature convergence
with updated genetic operators. The algorithm’s adaptability
enables the creation of a variety of organized musical outputs.

In Akanksha Satpute et al (2023) [3],the study proposes
using GA to compose music and using the fitness function to
select more melodic songs. In GA, two musical segments will
act as parent nodes for developing new music, and by using
genetic operators, the music will change so that the breaks
between the tunes are updated. Music that sounds pleasing is
chosen with the user’s assistance using the fitness function,
and if the user is satisfied with the generated tune, the process
of generating the music is terminated; otherwise, the selected
musical tune by the fitness function will serve as the parent
node for the next generation of musical tune. Furthermore, this
paper shows which fitness function should be applied to the
given problem

In Majumder and Smith (2021) [4], authors presented
their genetic algorithm for music recombination by extracting
features from different MIDI files. Their method recombines
rhythm, melody, and harmony to produce new compositions,



demonstrating how genetic algorithms can be used to blend
musical components from different sources.

We acknowledge that various research works inspired our
work and gave useful insights into the methodology and
concepts underlying our investigation. However, it is vital
to highlight that we did not use or replicate any of the
content, data, or findings from these sites. Instead, we built
our technique independently, drawing on our knowledge of the
current literature to add new ideas and insights to the subject.
This ensures that our work stands out while being guided by
the fundamental studies in this field.

III. PROBLEM STATEMENT

Music composition is an inherently creative process that is
full of subjective choices of rhythm, harmony and emotions.
We wanted to take this process and break it down into a
quantitative framework and apply genetic algorithms to recom-
bine pre-existing songs to generate new ones. By representing
musical elements such as tempo, velocity, time signature and
keys as data derived from MIDI files, we aimed to build a
system that uses genetic algorithms to analyze, understand and
manipulate these components. This would allow us to create
new songs that are a blend of creativity and computational
logic.

IV. METHODS

A. Genetic Algorithm

The genetic algorithm is made of five main categories:
initialization, fitness calculation, selection, crossover and mu-
tation. The initialization stage generates random population
from the pre-processed dataset. This initial population is
passed through the fitness calculation to generate a baseline
population fitness distribution. In the selection stage, best
fit individuals are selected and passed to the crossover and
mutation stages. During the mutation and crossover stages,
individuals are combined to create unique offspring comprised
of their parent’s genetic features. Once the new generation is
initialized, it returns to the fitness calculation stage. This cycle
continues until the specified generation limit when the optimal
solutions are identified.

B. Preprocessing

1) MIDI File Exploration: A MIDI file, or Musical Instru-
ment Digital Interface file, is a set of instructions for musical
playback – like tempo, time signatures, notes, velocity, track
names and other information. Unlike audio files, MIDI files
do not store sound directly but instead encode how a track
should be played. Since it does not contain the sound but only
the information on how the track is played, it sounds different
on different devices or software used.

MIDI files are ideal for our application as with the infor-
mation they extract, they enable us to manipulate the musical
elements like tempo, velocity, time signatures, keys and track
IDs. This structured format enables easy recombination and
transformation of the musical elements, thus making it a good
fit for the genetic algorithm.

Also, MIDI files are compatible with digital audio work-
stations like Garageband and Audacity, which ensures easy
application.

2) Dataset Construction: Given our input MIDI songs,
we proceeded to break each of them into three unique 20-
measure sections at the beginning, the middle, and the end
of the song. This ensured that we were sampling a diversity
of musical features within the individual song itself. Each of
these sections were split further into their individual musical
instruments. These individual instrumental tracks resembled
the foundation of our genetic pool.

Our gene pool is organized through a binning process
that put relatively similar instruments into the same bin. For
instance, an electric guitar and an acoustic guitar would both
be binned as a guitar. We organized the genes into five
instrument bins that are commonly used in four-piece bands:
drums, guitar, piano, bass, and other instruments. Each of these
genes contains data on the notes that are played within them.
We chose to extract singular features such as note pitch and
note velocity. We also extracted combinatory features such
as track tempo, time signature, and the track’s identification.
Through this binning structure and the quantifiable features
that MIDI files allow us to extract from every gene, we created
the data structure that the rest of the program’s functions
aligned to.

V. ARCHITECTURE

A. First Generation

To conduct genetic algorithms, an initial random population
is required. At this stage, we are unable to deduce what
combinations of genes would be most highly rated by the
fitness function, so it is imperative that we compose individuals
made of random genes from across our available dataset.

In the preprocessing stages, we extracted the instrumental
tracks of each input MIDI file and placed them into their
respective instrument bins. By selecting a random track from
each of the five bins and combining them, we can form
one new individual. Hence, an individual is formed by five
randomly selected music tracks. Repeating this process allows
us to populate our first generation with a group of randomly
generate individuals, which is the prerequisite for generating
further populations.

B. Fitness Function

1) Velocity Scoring: Velocity scoring is used to maintain a
consistent level of loudness among all instruments in a song. It
involves determining the average velocity of all tracks within
a parent and comparing each track to that average velocity.

They are scored based on their individual velocity in com-
parison to the average velocity within the pair; those closest to
the average velocity receive a higher score with a maximum
of 20, while those who deviate receive a lower score with a
minimum of 1. The overall score has already been adjusted to
100 because a parent can only have a maximum of five tracks,
and each track can only receive a maximum score of 20.



2) Tempo Scoring: Tempo scoring is used to ensure rhyth-
mic consistency across all tracks in the parent. It is the rate
at which an instrument is performed; hence, songs with tracks
that play at the same rate sound better. We compute the
average tempo over all five tracks of a parent and set three
target tempos: half the mean, the same as the mean, and
double the mean. For each instrument, the absolute difference
between its tempo and the nearest target tempo is calculated
and subtracted from 100 to get a score, with perfect alignment
to any target yielding 100 points and bigger deviations yielding
lower scores.

The final tempo score is normalized to a 0-100 scale by
dividing the sum of all scores by the maximum possible score
(5 tracks × 100 points) and multiplying by 100, which ensures
that the work is rhythmically coherent while allowing for
musically compatible tempo variations.

3) Time signature scoring: Time signature scoring is used
to ensure metric consistency between tracks within a parent.
It refers to a pattern in which each track is played. The score
is determined by the highest number of tracks sharing the
same time signature. If all five tracks share the same time
signature, we give 100 points. For four matching tracks, we
give 80 points. For three matching tracks, 60 points. For two
matching tracks, 40 points. If no tracks match or only one
track matches others, we give 20 points.

4) Key compatibility: Key compatibility scoring employs
the Camelot Wheel technique, which was created by Mark
Davis in the 1990s to assist DJs in harmonically mixing music.
In this approach, traditional musical keys are translated to a
number-letter format (e.g., ”C major” becomes ”8B”), where
numbers (1-12) signify wheel positions and letters indicate
whether the key is major (B) or minor (A). The score uses
three rules to determine the compatibility of each track’s keys
within a parent.

• Keys are compatible if they share the same letter and
adjacent numbers or are the same number.

• Keys are compatible if they share the same number but
distinct letters.

• A key is always compatible with itself. For each compat-
ible pair found, we add 1 to our compatibility score.
The final key score is calculated by dividing the total
compatibility score by 20 (maximum possible score) and
then multiplying by 100 to get a percentage. This ensures
compositions maintain harmonic relationships while al-
lowing creative variations.

5) Recombination Scoring: Recombination scores ensure
that no tracks within a parent come from the same song. The
function searches for unique track IDs connected with each
track and scores such that if any of the track IDs match, a
penalty of -400 is imposed, and if none match, a neutral score
of 0 is assigned. The inclusion of a penalty score ensures
that the genetic algorithm handles tracks from different tunes,
lowering the number of redundant tracks.

C. Combined fitness calculation

Thus, the total of these five scoring components—velocity,
tempo, time-signature, compatibility key, and recombination
is the final fitness score.

Since there are four scoring components with value and one
with neutral scoring, all of which are scaled to a maximum
of 100, the highest theoretically attainable score is 400. Songs
with a higher score conform to the fitness function’s objective
definition of a good song.

D. Mutation

The mutation function is an important cog in the workings
of a genetic algorithm, as it helps introduce randomness and
variation in the population. It enables the algorithm to explore
a wider range of solutions by avoiding getting stuck in local
minima. In our project, the mutation function manipulated
musical features such as keys, tempo and velocity. In a mutated
individual, we randomly chose a gene and randomly altered
one of its features. This introduced variations in the song that
deviated from the parent songs. For example, the mutation
function might change the tempo of a song to speed up or
slow it down or adjust the velocity to alter the intensity of the
songs or transpose it to a different key altogether.

E. Crossover

The crossover function combines two parents’ genetic in-
formation to produce children. The crossover function iterates
across the complete population to execute a crossover between
two parents that makes two children. The function finds a
random crossover point based on the length of the parent such
that at least one gene has swapped out with the other parent,
making two offspring. We use an ordered crossover method,
starting with the first two parents and moving on to the next
set of parents. If the population is odd, we crossover the first
child with the odd one out.

F. Next generation construction

While creating the successive generations, we make sure
that optimization, diversity, and retention of best-fit individuals
is prioritized. Each new generation is comprised of four
discrete populations: two of them are taken from the mutation
and crossover functions, a third one is a subset of the best-
fit individuals from the previous generation, and the fourth
is a newly generated randomized population. This approach
helps us to retain the features that maximize the fitness of our
newer population while also with the goal of introducing novel
combinations that can benefit the population’s fitness overall.

VI. RESULTS AND DISCUSSION

Music quality is subjective and therefore, no objective “ear
test” of the algorithm’s output songs exists to provide data
driven insights. However, given our algorithm’s objective def-
inition of a quality song, we were able to identify trends in the
distributions of a population’s fitness scores and validate the
intended performance of our genetic algorithm architecture.
Users can alter two inputs within our program, the number of



generations, and the composition of the populations (see Next
Generation Construction). Figure 1 and Figure 2 highlight the
population distribution differences with generation count as
the independent variable and population composition as the
control. Figure 3 compared to either of the other two figures
highlights the population distribution differences with popula-
tion composition as the independent variable and generation
count as the control.

Fig. 1. 100 Generations, Composition 1

Fig. 2. 500 Generations, Composition 1

Fig. 3. 100 Generations, Composition 2

A. Discussion

The overall population fitness score distributions resemble
our expected trends of a functional genetic algorithm. The
0th generation in each figure (1, 2, 3) is widely distributed
with a poor median value, indicating a higher density of
individuals in the lower quartile. Recall, the 0th generation
is a strictly randomized generation. Sensibly, the random
population would present a wide range of fitness scores and
poor median fitness since the random function has no intrinsic
instruction to favor generating highly rated individuals.

After the 0th generation, the most notable behavior is the
immediate improvement of the population’s median fitness
value and the continued improvement of the upper quartile.
The improving upper quartile indicates that the introduction
and continued inclusion of the mutation, crossover, and best
fit logic to the population is properly incentivizing fitness score
growth towards higher scores. The median score’s trajectory
appears to flatten after the second sample despite the continued
improvement of the upper quartile indicating that the upper
quartile individuals continue to improve while the quantity of
upper quartile and lower quartile individuals remain consistent.

In Figure 1, the 100-generation plot’s upper quartile contin-
ues to improve towards the best fit song value. In Figure 2, the
500-generation plot’s upper quartile reaches the best fit song
values of the population around 165 generations and does not
improve much further. It appears that after 165 generations,
given the features of the input files, randomly generated
individuals and crossed over children are unable to provide
significant improvements past the plateaued fitness score. Only
the introduction of novel feature values through mutations
could provide further improvements. The mutation function’s
logic is randomized resulting in minimal and unpredictable
best fit song improvements.

Figure 3 best highlights how the plateauing behavior differs
between differing population compositions.Figure 3’s upper



quartile plateaus by the 66th generation compared to Figure 2’s
upper quartile that plateaus in the 165th generation. Relative
to Figure 1 and Figure 2, Figure 3 uses a higher percentage of
mutated and crossed-over individuals with a lower percentage
of best fit and randomized individuals in each generation. We
can infer that the higher mutation and crossover rates con-
tribute to a faster convergence to the algorithm’s performance
limits. Additionally, since the best fit individual value does
not significantly differ between composition types, we can
infer that there is an empirical maximum fitness value bounded
by the features of the input songs themselves along with our
fitness function’s logic.

VII. CONCLUSION AND FUTURE WORKS

The positive results of our algorithm raise multiple topics
of interest for further exploration. One particular area is the
development of the fitness function. While our fitness function
manages to define the criteria for a proper euphonious song, it
does not capture the essence of popular song genres, such as
pop and rock and roll. It may be possible to alter the fitness
function so that it can capture the essence of a genre of music
and reflect that in the genes of our population. For example,
finding the approximate range of velocities, pitches, and keys
most employed by the rock and roll genre and implementing
those into our fitness function can lead to the mimicry of rock
and roll music in our final population.

Limited by our amateur music theory backgrounds, we were
only able to use rudimentary musical features to objectively
define the fitness of our generated songs. Combinations of
the musical features we expressed result in more advanced
topics such as phrasing, rhythm, meter, and harmony. If we
added these advanced features to our fitness function, we could
conceivably create more complex and musically appealing
outputs.

Currently, our algorithm successfully produces songs with
harmonious qualities by filtering a population of songs through
a predetermined fitness function. This provides us with an
elementary proof of concept that genetic algorithms and
mathematics can produce cohesive songs, as well as multiple
avenues for future development.

VIII. ADDITIONAL DELIVERABLES

Please find the link to our repository: https://github.com/
vishwajeet-hogale/Music-Reconstruction

A. Contributions Paragraph

All of us collaborated weekly to define intermediate de-
liverables and the technical structure of our code. Everyone
was delegated coding responsibility. While some functions
may have been more involved than others, we made sure that
everyone had equal opportunity to contribute. Vishwa was
essential in the integration of our various functions. All of
us equally contributed to the report and presentation. Overall,
there was respect for each other’s time and efforts.

REFERENCES

[1] M. Farzaneh and R. Mahdian Toroghi, Music Generation Using an
Interactive Evolutionary Algorithm. Springer International Publishing,
Dec 2019, pp. 207–217. [Online]. Available: http://dx.doi.org/10.1007/
978-3-030-37548-5 16

[2] D. Matić, “A genetic algorithm for composing music,” Yugoslav Journal
of Operations Research, vol. 20, no. 1, pp. 157–177, 2010.

[3] A. Satpute, M. Bajbalkar, M. Velankar, S. Gurav, and P. Abnave, “Soft
computing for music generation using genetic algorithm,” Journal of Soft
Computing Paradigm, vol. 5, pp. 11–21, 03 2023.

[4] S. Majumder and B. D. Smith, “Music recombination using a genetic
algorithm.” ICMA, 2018.

https://github.com/vishwajeet-hogale/Music-Reconstruction
https://github.com/vishwajeet-hogale/Music-Reconstruction
http://dx.doi.org/10.1007/978-3-030-37548-5_16
http://dx.doi.org/10.1007/978-3-030-37548-5_16

	Introduction
	Related Works
	Problem Statement
	Methods
	Genetic Algorithm
	Preprocessing
	MIDI File Exploration
	Dataset Construction


	Architecture
	First Generation
	Fitness Function
	Velocity Scoring
	Tempo Scoring
	Time signature scoring
	Key compatibility
	Recombination Scoring

	Combined fitness calculation
	Mutation
	Crossover
	Next generation construction

	Results and Discussion
	Discussion

	Conclusion and Future Works
	Additional Deliverables
	Contributions Paragraph

	References

