
Khoury College, Northeastern University

Programming Assignment 1

Instructions

• If you discuss this problem set with one or more classmates, all parties must declare
collaborators in their individual submissions within a code comment. Such discus-
sions must be kept at a conceptual level, and no sharing of actual code is permitted.

• You may use any generative AI tool available to you, as long as it is appropriately
cited in a code comment. I recommend using AI tools for debugging or conceptual
understanding rather than to produce actual functions.

Deadlines

• Submissions should be uploaded to Gradescope by 6:00 PM on Sep 28.

• Gradescope will show a ‘late’ deadline of Oct 1. This is intended solely for any
students who may wish to invoke the freebie, outlined in the course policies.

• Any submissions received after 6:00 PM on Sep 28 will be considered late, and will
automatically invoke the use of your freebie. If you have used your freebie on a
previous assignment, your submission will not be accepted for credit.

• Regrade requests must be submitted on Gradescope within 1 week of receiving your
grade, after which no further requests will be entertained.

Reach Out!

If at any point you feel stuck with the assignment, please reach out to the TAs or the
instructor, and do so early on! This lets us guide you in the right direction in a timely
fashion and will help you make the most of your assignment.

1



Shapeshifting Coloring Problems

In this assignment, you are given a PyGame environment (in the gridgame.py file) that
renders a randomly initialized n× n grid, with some cells pre-filled with one of four colors.
Your goal is to build an AI agent that solves a coloring problem over this grid (see next
page for constraints), such that no two cells that share an edge have the same color.

Figure 1: Examples of Initial Configurations

Your agent will attempt to fill the environment by moving a virtual ‘brush’ over this grid
and placing colored shapes, where the shape of the brush can be cycled through the
following choices (numbered 0-8):

Additionally, each brush can be cycled through one of four colors1 (numbered 0-3).

1If, despite our best efforts, the color choices here pose accessibility concerns, they may be edited in the
gridgame.py file. Alternatively, please reach out to the instructors/TAs, and we will be happy to implement
a different palette for you.

2

https://www.pygame.org/


Your agent must interact with the environment using the execute() function called from
within the hw1.py file, with the following argument options (passed as strings):

• export: returns the current state of the grid, a list of shapes with positions and
colors currently placed on the grid, and a Boolean indicating whether the coloring
constraints have been satisfied.

• up/down/left/right: move the brush in the specified direction by one cell. The
brush starts in the top left corner of the grid when the program is executed.

• place: place a shape on the grid, i.e. color the cells covered by the brush in the
currently selected brush color.

• switchshape: cycle to the next brush shape option.

• switchcolor: cycle to the next brush color option.

• undo: undo the last placed shape.

Running the execute() function with any argument returns six items:

Variable Data Description

shapePos Brush Position
Current location of the

brush, (X, Y coordinates)
list of size 2

currentShapeIndex
Current Shape

Index
Index of the currently

selected shape, int

currentColorIndex Current Color Index Index of the currently
selected color, int

grid Grid State
Updated state of
the (n× n grid),

np.array (shape n× n)

placedShapes Placed Shapes List of shapes already placed
on the grid, list(int)

done
Coloring

Constraints
Satisfied?

Boolean indicating if coloring
constraints are met, bool

Table 1: Summary of Data in the Shapeshifting Coloring Environment

3



Your Task

Your goal is to build an AI agent that colors this grid using as few colors as possible, such
that no two adjacent cells share the same color. Further, your goal is to achieve this color-
ing using as few shapes and colors as possible - a larger brush may cover multiple cells,
but counts as one shape. You may use any of the concepts we have discussed in class
so far to implement your agent, but we highly recommend using a local search approach
such as hill climbing, simulated annealing or genetic algorithms to get the most out of this
assignment. Refer to hw1.py for implementation-specific instructions.

Recall that a local search may not always converge to the ‘optimal’ coloring; so this
assignment is graded on correctness, rather than optimality. Any implementation which
follows all the rules specified below and on average, leads to a valid coloring of the grid
within the autograder’s time limits will receive full points.

Environment Rules: Adjacent cells are defined as cells that share an edge between
them (i.e., diagonally neighboring cells may share the same color, since they only share a
vertex). If a brush partially or fully overlaps with an area of the grid that is already colored,
the execute function with the place argument will fail, i.e. the colors in those cells will not
be overwritten.

Assignment Rules: Any hardcoded solutions, or attempts to leverage the autograder’s
design to maximize points scored will result in an automatic zero on the assignment. Your
agent must only use the execute() function to interact with the environment using its
different arguments, and use its returned values to implement your objective function, or
any validity check you may wish to use. Do not directly manipulate the gridgame variables
- doing so will result in an automatic zero. Treating the environment as a black box (even
when you know its internals) is a very important concept, and will serve you well in future
assignments, as well as in your AI careers. Implementations must be optimized for good
runtime - Gradescope has an autograder timeout of 10 minutes. Any submissions that do
not finish executing in 10 minutes will be treated as incomplete, and will be evaluated for
partial credit based on correctness.

Submission: Submit a zip file containing your completed hw1.py file, the provided
gridgame.py file, and the grid.txt, shapes.txt and time.txt files produced in your
working directory upon executing the homework script. Upload this zip file to Gradescope,
and ensure the autograder runs as intended.

4


