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Abstract – This project proposes a methodology for classifying 
baseball pitch-types using biomechanical data extracted from 
video samples via computer vision pose-estimation. Specifically, it 
identifies subtle, repetitive body movements to predict pitch types 
before release, a phenomenon known as pitch-tipping. By 
combining pose estimation, time-series modeling, and explainable 
ML techniques such as t-SNE and UMAP, this study provides both 
predictive models and interpretability tools to aid hitters in 
exploiting tells and helping pitchers eliminate them. 

Index Terms – Pose-Estimation, Action Recognition, Recurrent 
Neural Networks, Baseball, UMAP   

I. INTRODUCTION 

The game of baseball has not fundamentally changed over 
the last century. America’s pastime is still played on the same 
field dimensions, under the same general rule constraints, 
with the same equipment down to the very mud from a 
Delaware River tributary that the baseballs are rubbed with 
before entering circulation. Upon the adoption of baseball 
statistical analysis however, the game’s strategies and 
teachings have revolutionized. Given baseball’s discrete and 
controlled action space, the game is a prime environment for 
the benefit of machine learning insights upon which this 
project is based.  

Every unique event that occurs during a game is catalyzed by 
a duel between the pitcher and the hitter. A pitcher’s success 
is defined by their ability to withhold the hitter from reaching 
a base, and the hitter’s is the reciprocal. The inner 
mechanizations of this duel are an intricate dance of timing 
and predictive strategies by both individuals. This 
generalized overview contextualizes pitch-tipping, the 
phenomenon when a pitcher’s subtle repetitive movements 
prior to the ball’s release ‘tip-off’ the hitter as to what type 
of pitch they are about to be thrown. Exposing pitch-tipping 
patterns are beneficial to the hitter and detrimental to the 
pitcher.  

A. Problem Statement: 
In pitch-tipping identification, the opponent carries out a 
methodology similar to that of a machine learning classifier 
with relative body part positions as an input and the pitch 
thrown as the output. This project serves as a study into the 
application of computer vision human-pose estimation 

models to accurately predict pitches with an ultimate 
objective to offer classification explainability and generate 
actionable insights from the predictions.  
 
B. Results Overview: 
While the neural network architectures explored were able to 
predict pitch-types with significant performance, there was 
no actionable difference between individual pitcher’s models 
performances indicating one pitcher’s tendencies to tip their 
pitches more than the others who were sampled in the study. 
Furthermore, and perhaps with correlation indicated by the 
lack of model differential, the explainability methods did not 
provide conclusive insights that would benefit a hitter or 
pitcher in real time. These outcomes may be indicative of the 
performance of the methods used in this project, the pitchers’ 
abilities to maintain consistent movement patterns, or a 
combination of the two.       
 

II. RELATED WORK 

Upon the advent of accurate image classifier architectures 
such as ResNet and GoogLeNet, action detection through 
multi-frame analysis has been thoroughly examined. Karen 
Simonyan and Andrew Zisserman, the researchers behind the 
VGG convolutional neural network (CNN) architecture [6], 
proposed a two-stream architecture [5] that captures 
appearance information from video data frames and optical 
flow frames (displacements between frames) separately 
before fusing the streams together to make a final action 
prediction. This methodology, inspired by the human visual 
system, had one of the best performances on benchmarks 
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such as UCF-101 and HMDB-51 at the time of its publishing 
in 2014. While this study paved the way for future work, the 
architecture incurs immense computational cost between the 
dataset size and quantity of operations.  

Yu, Chen, et. al [1] proposed a very similar data structure as 
the structure used in this study with 3D dataframes of 
landmark columns and frame rows. However, they chose to 
focus on 2D CNN architectures as the main method of 
classification. Essentially, they maintained the image-based 
action classification method proposed by Simonyan and 
Zisserman, just with drastically reduced data requirements 
by using 25 landmarks instead of entire image pixel values. 
Using the UCF-101 behavioral recognition dataset, they 
were able to see conclusive classification results, especially 
in highlighting performance improvements as the density of 
frames used in a given frame range increased.  
 

III. DATA PROCESSES 

A. Dataset: 
Major League Baseball’s official database, MLB Film 
Room, served as the dataset for the project. MLB Film Room 
is an open-sourced video database of every baseball play in 
every Major League Baseball game as it was broadcast since 
2017. All videos are intricately organized and labeled, 
specifically, down to the pitcher, the stadium, and the type of 
pitch the pitcher throws in the video. This level of 
supervision enabled me to gather video samples filmed in a 
consistent environment of a specific individual throwing 
specific pitches in bulk. Post-processing, approximately 800-
900 video samples per pitcher with 100-300 samples per 
pitch-type were collected. 
 
B. Data Mining:   
Landmark positions were extracted from each video sample 
using Google’s MediaPipe [3] computer-vision human-pose 
estimation library for further modeling and analysis. 
MediaPipe uses a joint CNN architecture to first, detect the 
location of a subject in an image, and second, use a pretrained 
model to locate the pixel location of its available landmarks. 
Running MediaPipe over a video sample outputs 3D 
coordinate values and a confidence score of 33 landmarks 
per video frame. MediaPipe was run in parallel over all video 
samples using its highest quality setting to create a metadata 
set comprised of a landmark coordinate dataframe, video ID, 
video index, and pitch label.  
 

 
Figure 1: Landmark Plot with Overlaid Visualization 

 
C. Preprocessing: 
The following data preprocessing steps were taken to clean 
and prepare the data for further analysis: 
 
• Unfit video samples were discarded based on a first-

frame similarity score test with a user provided quality 
video sample.  

• Z-coordinates were discarded due to my lack of 
confidence in 3D pose-estimation accuracy on the 2D 
video samples. 

• Common landmarks were consolidated per frame for 
feature reduction and data smoothing purposes (i.e. left 
ankle, left foot index, left heel consolidated to left foot).  

• Landmark coordinate values were scaled from pixel 
values to inches using the pitcher’s height as reference.  

• Landmark coordinate values were referenced to the 
pitcher’s throwing-arm-side’s foot’s first frame 
coordinates as the origin. 

• Data was cropped to a consistent range referencing from 
a consistent landmark value in every video, thus 
consistently capturing the window in which pitch-
tipping could occur. The consistent landmark value 
chosen was the maximum y-value of the pitcher’s 
throwing-arm-side’s foot which rises at the same time 
relative to the throw release across every video. 100 
frames were chosen prior to this reference point up to 
the arbitrary point where pitch-tipping was no longer 
applicable to the hitter.   

• Every fourth frame of the 100 total was used to 
consolidate into 25 total frames and smooth the data.  
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IV. MODEL ARCHITECTURES 

A. Logistic Regression: 
Three logistic regression models were generated per pitcher, 
each using a different loss function: 
 

Loss Formula 

L1/Lasso 
1
2𝑛 	∗ 	

‖𝑦	 − 	𝑋𝑤‖!! 	+ 	𝛼	 ∗ 	‖𝑤‖" 

L2/Ridge 
1
2𝑛 	∗ 	

‖𝑦	 − 	𝑋𝑤‖!! 	+ 	𝛼	 ∗ 	‖𝑤‖!! 

Elastic-
Net 

1
2𝑛 ∗

‖𝑦	 − 	𝑋𝑤‖!! + 𝛼 ∗ ℓ1𝑟𝑎𝑡𝑖o ∗ ‖𝑤‖" 
+0.5 ∗ 𝛼 ∗ (1 − ℓ1𝑟𝑎𝑡𝑖𝑜) ∗ ‖𝑤‖!! 

* n = number of samples, y = target value, X = training 
data, w = coefficient vector, 𝛼 = regularization term,  
ℓ1𝑟𝑎𝑡𝑖𝑜 = mixing parameter of ℓ1 and ℓ2 losses 

Figure 2: Elastic-Net Loss, Hybrid L1 and L2 Loss* 

 
B. Support Vector Machines (SVM): 
Three SVM’s were generated per pitcher, each using a 
different kernel function: 

Kernel Formula 

Linear** 𝐾(𝑥, 𝑧) = (𝑥#𝑧)$ 

Polynomial*** 𝐾(𝑥, 𝑧) = (𝑥#𝑧 + 𝑐)$ 

Radial Basis*** 𝐾(𝑥, 𝑧) = 𝑒
%‖'%(‖!! )*  

* x = input data, z = transformation, 𝜎 = std. dev. 
** Monomials of deg. n  

*** Monomials of deg ≤ n 
  

Figure 3: SVM Model Kernels* 

C. Deep Neural Networks: 
Three deep neural network (DNN) architectures were 
explored per pitcher. A recurrent neural network (RNN), a 
long-short term memory neural network (LSTM), and a 
CNN. Due to the potentially unique model requirements of 
every pitcher in the study, I deployed a genetic algorithm [2] 
to train a variety of many-to-one RNN and LSTM models 
and output the objectively best fit model for that specific 
player’s data. The objective fitness score function, as shown 
in Equation 1, incentivizes high test set accuracy while 
penalizing for an imbalance in train set accuracy to test set 
accuracy, an indicator of model overfitting. 
  

Hyperparameter Values 

Learning Rate 0.0001, 0.0005, 
0.001, 0.005, 0.01 

Hidden Layer Depth 1, 2, 3, 4, 5 
Hidden Layer Size 16, 32, 64, 128, 256 
Training Epochs 5-50 

Architecture Type RNN or LSTM 
Number Generations 5 

Population Size 30 
Mutation Rate 0.2 
Crossover Rate 0.7 
Test Set Ratio 0.2 
Figure 4: Genetic Algorithm Encoding 

Fitness = test % - 0.25 * max(0, train % - test %) 

Equation 1: Fitness Score Formula 

The CNN architecture, as shown in Figure 5 below, consists 
of three layers comprised of a convolution, a batch 
normalization, and a max pooling. Between the final two 
fully connected encoded layers is a dropout layer to mitigate 
model overfitting.   

 

 

 

Figure 5: CNN Architecture
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V. EXPLAINABILITY METHODS 
 
A. Landmark Trajectory Plots: 
Plots detail the landmark trajectories per video sample and 
averaged over all samples per pitch-type per pitcher. 
Looking for differences in the average trajectories per 
landmark per pitch type may uncover landmarks and frame 
ranges of interest. Further investigation across specific 
video samples may provide further enlightenments. 
 
B. t-SNE and UMAP: 
t-Distributed Stochastic Neighbor Embedding (t-SNE) [7] 
and Uniform Manifold Approximation and Projection 
(UMAP) [4] are dimensionality reduction methods that 
preserve the local relationships between data points in 
higher dimensions, and recreate those relationships in 
lower, visualizable dimensions. These methods are useful 
unsupervised machine learning techniques that enable you 
to visualize clusters and other patterns within your high-
dimensional data. In a supervised environment, they are 
useful to see what features may separate the data’s 
classifications. 
   
t-SNE assesses the high dimensional relative location of 
datapoints to one another by grouping data points that 
would most likely be generated together under the same 
gaussian probability distribution function (PDF). UMAP 
assesses the high dimensional relative location of 
datapoints to one another by constructing a high 
dimensional graphical representation of the data. Both 
relationship structures are recreated in the visualizable 
dimension.  

 

VI. RESULTS AND DISCUSSION 

A. Modeling Results and Discussion: 
Figure 4, below, shows the performances of the top RNN 
or LSTM models from the genetic algorithm output which 
was consistently the best performing model out of all the 
models explored. The player model accuracies do not 
reveal one individual pitch-tipping significantly more than 
another. However, most models show relative success in 
classifying pitches with the pose-estimation data. The other 
figures in this section show Nestor Cortes’s model 
performances. Figure 5 shows the evolution of the model 
outputs in a sample genetic algorithm process. 

 

Generation Model Epochs Learn 
Rate 

Hidden 
Size Depth 

1 LSTM 18 0.001 16 5 
2 LSTM 18 0.001 16 5 
3 LSTM 27 0.01 64 2 
4 LSTM 27 0.01 64 2 
5 RNN 18 0.0005 32 2 

 
Figure 5: Genetic Algorithm Progression 

Figure 6, below, shows logistic regression and SVM model 
performances. These models either indicate poorer 
classification performance than the RNN/LSTM models or 
overfitting as indicated by the high train set accuracy 
relative to the test set accuracy. 

Figure 7, below, shows Nestor Cortes’s CNN model’s 
training loss and train/test set accuracies per epoch. Most 
models show a similar pattern of rapid divergence in the 
train and test set losses and performances.  

Overall, the models performed as expected. Given the 
complex and temporally dependent nature of the 
biomechanical datasets, the expectation was that RNN’s 
and LSTM’s would greatly outperform all of the logistic 
regression and SVM models. The majority of the models 
output by the genetic algorithm were RNN’s. This is 
reasonable since LSTM’s effectiveness is in relatively 
long-term memory recall. The benefits LSTM architectures 
bring in mitigating exploding or vanishing gradients during 
backpropagation may not outweigh the shorter-term 
effectiveness of the RNN architecture over the 25 frames 
of landmark data used per pitch.

 



 

 5 

 

Figure 4: RNN/LSTM Model Performance per Player 

 

a. Logistic Regression           b. SVM 

Figure 6: Nestor Cortes Logistic Regression/SVM Model Performances 

 

                   a. Loss vs Epoch                           b. Accuracy vs Epoch 

Figure 7: Nestor Cortes’s CNN Loss and Accuracy per Epoch



 

 6 

Logistic regression classifiers do not handle outlier or 
misclassified data well due to the rigidity of the loss 
functions. Baseball pitchers usually have multiple, consistent 
forms of pre-throw techniques called windups. These 
different windups would result in multiple clusters of all 
pitch types which would not be compatible with logistic 
regression models of any kernel or loss function. Refer to 
Figure 8 where the t-SNE plot clearly displays this 
phenomenon.  

SVMs, serving as a single-neuron, shallow neural network, 
had higher expectations than logistic regression especially 
with kernels applied. As a single-neuron, shallow neural 
network, the linear kernel would not have enough depth to 
create significantly separable data as the overfit train/test set 
ratios signify.  The polynomial and RBF kernels do show 
improvement in both test accuracy and the overfitting issue. 
Ultimately, given the temporal complexity of the data and 
potential outliers due to data quality issues from MediaPipe’s 
limitations, a robust DNN would better suit the data.  

The CNN architecture did perform better than the logistic 
regression and SVM models overall. In Nestor Cortes’s 
example shown, the train-set and test-set accuracies reach 
roughly 85% and 62% respectively after 7 training epochs. 
This level of accuracy imbalance does not necessarily 
indicate overfitting but does indicate the model may not be 
as representative as a model with a smaller differential and 
similar test-set accuracies like the RNN and LSTM models. 
While a more tailored CNN architecture may have offered 
better results, the effectiveness of the simple RNN/LSTM 
models redirected my focuses towards  them.  

B. Explainability Results and Discussion: 

Ultimately, the explainability methods used were less 
explanatory as they were exploratory. Of the pitchers 
observed in the study, there was not an actionable case of 

pitch-tipping exposed. Figure 8 shows the t-SNE 
representation of Garrett Crochet. He had the highest test 
accuracy among the samples in Figure 4 at 64%. Using all 
his landmarks, there is not a clear distinction between the 
pitches thrown. Recall, the general clusters are likely 
resulting from different types of windups. However, focusing 
on landmark ‘right_foot’, small clustering distinctions can be 
made between the color-coded pitches. For instance, the 
cluster circled appears to have significantly more Cutter and 
Fastball datapoints than Sweeper and Changeup datapoints. 
This observation is a bit of a reach, but this is the theoretical 
process that can be taken.  

With this insight, we can evaluate the ‘right_foot’ xy-
coordinate motion over the course of the 100 frames selected 
just before the pitch is released using the average motion per 
pitch type plots shown in Figure 9. Around frame 80, you 
can see a discernable difference in the y-coordinates of the 
fastball and cutter. This specific landmark positioning at that 
explicit range of frames can potentially be translated to 
actionable insights for a hitter to look out for or for a pitcher 
to fix. 

Figure 9: Garrett Crochet’s Right Foot Representations 

Figure 8: Garrett Crochet’s Right Foot t-SNE Representations 
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VII.  CONCLUSION AND FUTURE WORK 

Given the relative success of the models to classify pitch 
types based solely on 25 frames of information acquired 
from an “over-the-shelf” human pose-estimator using video 
samples derived from a largely uncontrolled environment, I 
am led to believe that the methods used in this study have 
very practical applications after further investigation and 
refinement.  

I would have liked to process more player’s data. I am 
confident that there would have been more conclusive results 
if I were able to extend these approaches to the 416 pitchers 
on active MLB rosters. Professional baseball pitchers, 
naturally, are typically pretty good at not pitch-tipping. The 
small sample size I chose, especially being comprised of the 
more elite pitchers in the league during the 2024 season, is 
not representative.  

Regarding the modeling process, I would like to train all the 
models with a binomial classifier architecture and observe if 
the actionability of the results improve. Instead of a 
multiclass classifier to predict each individual pitch, a 
binomial classifier classifying ‘fast’ and ‘off-speed’ pitches 
may be more successful and provide similarly actionable 
insights. Timing is the most significant insight a hitter can 
have.  

As previously stated, the explainability methods were closer 
to exploratory methods since they were not directly tied to 
the models’ training processes. I was not able to successfully 
integrate a SHAP analysis to my models like I intended to. 
The SHAP library provides insights as to how heavily 
different features were weighted and ultimately contributed 
to the model’s predictions. In theory, a SHAP analysis could 
highlight the exact features and the exact frames under which 
those features most contributed to the model’s output 
predictions.  
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VIII. ADDITIONAL DELIVERABLES 

GitHub Repository: 
 https://github.com/jfeldm02/Pitch-Tipping-Detection 

https://github.com/jfeldm02/Pitch-Tipping-Detection

